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q  The Goal: 

To understand QCD and the strong interaction dynamics, and 
to explore hadron structure and its properties by studying 
high energy collisions with polarized beams 

q  The Plan (approximately): 

Electron-Ion Collider 

Connecting QCD quarks and gluons to observed hadrons and leptons 

Fundamentals of  QCD factorization and evolution  

Three lectures 

Hard scattering processes with transversely polarized beams 

Two lectures 

Hard scattering processes with longitudinally polarized beams 

Three lectures  

The plan for my eight lectures 

See also talks by Yuan and Xiao 



Summary of  lecture one 

q Cross section with identified hadron(s) is NOT completely 
calculable in QCD perturbation theory 

q QCD Factorization – neglecting quantum interference 
between dynamics at hard partonic scattering and those 
at hadronic scales – approximation 

q Predictive power of  QCD factorization relies on the 
universality of  PDFs (or TMDs, GPDs, …), the calculations 
of  perturbative coefficient functions – hard parts 

q EIC is a ultimate QCD machine:  
     1)  to discover and explore the quark/gluon structure and  

        properties of  hadrons and nuclei, 
     2)  to search for hints and clues of  color confinement, and  
     3)  to measure the color fluctuation and color neutralization 

q  EIC is a tomographic machine for nucleons and nuclei 
     with a resolution better than 1/10 fm  



How to connect QCD quarks and gluons 

to observed hadrons and leptons? 

Fundamentals of  QCD factorization 

and evolution  



QCD factorization – approximation 

q  Creation of  identified hadron(s): 

⇡

O
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Perturbative! 

Non-perturbative, 
but, universal 

Factorization: factorized into a product of  “probabilities” ! 



q  Scattering amplitude: 
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q  Cross section: 

( )
( ) ( )

2 3 3
2DIS

3 3
, ', 1

1 1 ', '; ,
2 2 2 2 2 2 '

X
i

X i i

d l d kd q
s E Eλ λ σ

σ λ λ σ
π π=

⎡ ⎤⎛ ⎞= Μ ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥⎣ ⎦

∑ ∑ ∏ ( )4 4

1

2 '
X

i
i
l k p kπ δ

=

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠
∑

( ) ( )
2DIS

3 2

1 1 , ''
'

,
2

dE W q
d k s

k p
Q

L kµν
µν

σ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

q  Leptonic tensor: 
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Example:  Inclusive lepton-hadron DIS 



q  Hadronic tensor: 

q  Symmetries: 
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q  Structure functions – infrared sensitive: 
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²  Parity invariance (EM current) 
²  Time-reversal invariance 

²  Current conservation 
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  sysmetric for spin avg.

  real

0

W W

W W

q W q W

µν νµ

µν µν

µ ν
µν µν

=

=

= =

No QCD parton dynamics  
used in above derivation! 

DIS structure functions 
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Long-lived parton states 

q  Feynman diagram representation: 

W µν ∝ … 

q  Perturbative pinched poles: 
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q  Perturbative factorization: 
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Short-distance 

Nonperturbative matrix element 



q  Collinear approximation, if   Q ∼ xp ⋅n ≫  kT , k 2

Parton’s transverse momentum is integrated into parton distributions,  
and provides a scale of  power corrections 

Scheme dependence 
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– Lowest order: 

Same as an elastic x-section 

q  Corrections: 

q  DIS limit: 2 whil, ,    e fixedBQ xν →∞

Feynman’s parton model and Bjorken scaling 

Spin-½ parton! 

Collinear factorization – further approximation 



Parton distribution functions (PDFs) 

q  PDFs as matrix elements of  two parton fields:  
– combine the amplitude & its complex-conjugate 

But, it is NOT gauge invariant! 

can be a hadron, or a nucleus, or a parton state! 

ZO(µ2)

– need a gauge link: 

ZO(µ2)

– corresponding diagram in momentum space: 
Z
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μ-dependence 

Universality – process independence – predictive power 

+UVCT(µ2)



Gauge link – 1st order in coupling “g” 

q  Longitudinal gluon: 

q  Left diagram: 
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q  NLO partonic diagram to structure functions:  
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Diagram has both long- and short-distance physics 

q  Factorization, separation of  short- from long-distance:  

QCD high order corrections 



q  QCD corrections: pinch singularities in 4
id k∫

+ + + 
… 

q  Logarithmic contributions into parton distributions: 

⊗ + +…+UVCT 
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q  Factorization scale: 2
Fµ

To separate the collinear from non-collinear contribution 

Recall: renormalization scale to separate local from non-local  
              contribution 

QCD high order corrections 



q  Use DIS structure function F2 as an example: 
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h q→²  Apply the factorized formula to parton states: 
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Feynman  
diagrams 

²  Express both SFs and PDFs in terms of  powers of   αs: 
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How to calculate the perturbative parts? 



q  Change the state without changing the operator: 

– given by Feynman diagrams 

q  Lowest order quark distribution: 

²  From the operator definition: 

PDFs of  a parton 

q  Leading order in αs quark distribution: 

²  Expand to (gs)2 – logarithmic divergent: 

UV and CO divergence 



q  Projection operators for SFs: 
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Partonic cross sections 



q  Complex n-dimensional space: 

(2) Calculate  
IRS quantities  
here 

(3) Take εè 0  
for IRS quantities only 

Re(n) 

Im(n) 

4 6 

UV-finite, IR divergent 
 
 

UV-finite, IR-finite 

Theory cannot be  
renormalized! 

(1) Start from here: 
 
 UV renormalization 
 
a renormalized theory      

How does dimensional regularization work? 
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NLO coefficient function – complete example 



q  Lowest order in n-dimension: 
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q  NLO virtual contribution: 

( )1 2
,

2 2

2 2

(1 ) (1 )

4 (1 ) (1 ) 1 3 1                * 4
(1 2 ) 2

V
q q

s
F

g W e x

Q
C

µν
µν

ε

ε δ

α π ε ε
π ε ε ε

µ

− = − −

⎡ ⎤ Γ + Γ −⎛ ⎞ ⎡ ⎤− + +⎢ ⎥⎜ ⎟ ⎢ ⎥Γ − ⎣ ⎦⎝ ⎠ ⎣ ⎦

q  NLO real contribution: 

( )
2

1 2
, 2

4 (1 )(1 )
2 (1 2 )

1 2 1 1 2                * 1
1 1 2 2(1 2 )(1 ) 1 2

R s
q q Fg W e

Q

xx
x

C

x

ε

µν
µν

α π ε
ε

π ε

ε ε ε
ε ε ε ε

µ⎡ ⎤ Γ +⎛ ⎞− = − − ⎢ ⎥⎜ ⎟ Γ −⎝ ⎠ ⎣ ⎦

⎧ ⎫− ⎡ ⎤ −⎛ ⎞⎛ ⎞− − + + +⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥− − − − −⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭

Contribution from the trace of  Wμν 



q  The “+” distribution: 
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q  One loop contribution to the trace of  Wμν: 
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q  One loop contribution to pμpν Wμν: 

( )1
, 0V
qp p Wµ ν

µν = ( )
2

1 2
, 2 4
R s
q q F

Qp p W e
x

Cµ ν
µν

α
π

=

q  One loop contribution to F2 of  a quark: 
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       as  0ε⇒ ∞ →

Different UV-CT = different factorization scheme! 

q  One loop contribution to quark PDF of  a quark: 
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– in the dimensional regularization 



q  Common UV-CT terms: 

²  MS scheme: MS
UV
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q  One loop coefficient function: 
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q  Physical cross sections should not depend on the 
     factorization scale 
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DGLAP evolution equation: 
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q  PDFs and coefficient functions share the same logarithms 

PDFs: 

Coefficient functions: 

( ) ( )2 2 2 2
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Dependence on factorization scale  
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Calculation of  evolution kernels 

q  Evolution kernels are process independent 

²  Parton distribution functions are universal 

²  Could be derived in many different ways 

“Gain” “Loss” Change 

q  Extract from calculating parton PDFs’ scale dependence 
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P p p

k k
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p-k
p

kp
PP

p
k
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+
1

2
+

1

2

Collins, Qiu, 1989 

²  Same is true for gluon evolution, and mixing flavor terms 

q One can also extract the kernels from the CO divergence 
of  partonic cross sections 



Scaling and scaling violation 

Q2-dependence is a prediction of  pQCD calculation 
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From one hadron to two hadrons 

q  One hadron: e p 

Hard-part 
Probe 

Parton-distribution 
Structure 

Power corrections 
Approximation 

q  Two hadrons: 
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Predictive power:   
       Universal Parton Distributions 

q 



Drell-Yan process – two hadrons 

q  Drell-Yan mechanism: 
S.D. Drell and T.-M. Yan 
Phys. Rev. Lett. 25, 316 (1970) 

q2 ⌘ Q2 � ⇤2
QCD ⇠ 1/fm2

with 

q  Original Drell-Yan formula: 

2 
2 

2 

2 

⌦ ⌦

No color yet! 

Right shape – But – not normalization 

Rapidity: 

Lepton pair – from decay of  a virtual photon, or in general,  
a massive boson, e.g., W, Z, H0, … (called Drell-Yan like processes) 



Drell-Yan process in QCD 

q  Spin decomposition – cut diagram notation: 

( all � structure: �↵ �↵�5, , �↵�
(or �5�↵�

), I, �5

( all � structure: �↵ �↵�5, , �↵�
(or �5�↵�

), I, �5

q  Parity-Time reversal invariance: 

hp,�~s|O( , Aµ)|p,�~si = hp,~s|PT O†( , Aµ)T �1P�1|p,~si

q  Factorized cross section: 

�(Q,~s)± �(Q,�~s) / hp,~s|O( , Aµ)|p,~si± hp,�~s|O( , Aµ)|p,�~si

q  Good operators: 

hp,~s|PT O†( , Aµ)T �1P�1|p,~si = ±hp,~s|O( , Aµ)|p,~si
“+”  for spin-averaged cross section               PDFs: 

hp,~s| (0)�+ (y�)|p,~si hp,~s|F+i(0)F+j |p,~si(�gij),

p,~s p,~s



Drell-Yan process in QCD – LO 

q  Spin-averaged cross section – Lowest order: 

q  Lowest order partonic cross section: 

p,~s
1

2
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X
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+
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2 = Q2

q  Drell-Yan cross section: 



Drell-Yan process in QCD – NLO 

q  Real contribution: 

q  Virtual contribution: 

q  NLO contribution: 

Absorbed into PDFs – scheme dependence 



Drell-Yan process in QCD – factorization 

q  Beyond the lowest order: 
²  Soft-gluon interaction takes 

place all the time 
²  Long-range gluon interaction 

before the hard collision 

Break the Universality of  PDFs 
Loss the predictive power 

q  Factorization – power suppression of  soft gluon interaction: 



Drell-Yan process in QCD – factorization 

q  Factorization – approximation: 

²  Suppression of  quantum interference between short-distance 
(1/Q) and long-distance (fm ~ 1/ΛQCD) physics 

Need “long-lived” active parton states linking the two 

Perturbatively pinched at  p
2
a = 0

Active parton is effectively 
on-shell for the hard collision 

²  Maintain the universality of  PDFs: 

Long-range soft gluon interaction 
has to be power suppressed 

²  Infrared safe of  partonic parts: 

Cancelation of  IR behavior 
Absorb all CO divergences into PDFs 

Collins, Soper, Sterman, 1988  



Drell-Yan process in QCD – factorization 

q  Leading singular integration regions (pinch surface): 

Hard:  all lines off-shell by Q  

Collinear:   
²  lines collinear to A and B 
²  One “physical parton” 

per hadron 

Soft:  all components are soft 

q  Collinear gluons: 

²  Collinear gluons have the  

     polarization vector: 

²  The sum of  the effect can be  

     represented by the eikonal lines,  

which are needed to make the PDFs gauge invariant! 



Drell-Yan process in QCD – factorization 

q  Trouble with soft gluons: 

²  Soft gluon exchanged between a spectator quark of  hadron B and 

the active quark of  hadron A could rotate the quark’s color and 

keep it from annihilating with the antiquark of  hadron B 

k±

k±
²  The soft gluon approximations (with the eikonal lines) need        not 

     too small. But,        could be trapped in “too small” region due to the   

     pinch from spectator interaction: k± ⇠ M2/Q ⌧ k? ⇠ M

Need to show that soft-gluon interactions are power suppressed 



Drell-Yan process in QCD – factorization 

q  Most difficult part of  factorization: 

0?

0? y?

y?

²  Sum over all final states to remove all poles in one-half  plane 

      – no more pinch poles 

²  Deform the k± integration out of  the trapped soft region 

²  Eikonal approximation            soft gluons to eikonal lines 

      – gauge links  

²  Collinear factorization:  Unitarity             soft factor = 1 

All identified leading integration regions are factorizable! 



Factorized Drell-Yan cross section 

q  TMD factorization (                  ): 

The soft factor,        , is universal, could be absorbed into  
the definition of  TMD parton distribution 

q  Collinear factorization (                ):     

q? ⌧ Q

q? ⇠ Q

+O(1/Q)

q  Spin dependence: 

The factorization arguments are independent of  the spin states  
of  the colliding hadrons   

                same formula with polarized PDFs for γ*,W/Z, H0… 



PT–distribution (PT << M) – two scales 

q  Z0-PT distribution in pp collisions: 

PT as low as  [0,2.5] GeV bin (or about 1.25 GeV) 



PT–distribution (PT << M) – two scales 

q  Interesting region – where the most data are: 

q  Fixed order pQCD calculation is not stable! 

/ 1

q2T
! 1+

q  Large logarithmic contribution from gluon shower: 


↵s ln

2

✓
M2

Z

q2T

◆�n

Resummation is necessary! 

PT << MZ ~ 91 GeV Two observed, but, very different scales 

See Yuan’s talk 



PT–distribution (PT >> M) – two hard scales 

q  PT-distribution – factorizable if  M >> ΛQCD: 

d�AB

dydp

2
T dQ

2
=

X

a,b

Z
dxa fa/A(xa)

Z
dxb fb/B(xb)

d�̂ab

dydp

2
T dQ

2
(xa, xb,↵s)

How big is the logarithmic contribution? 

q  Improved factorization: 

Beger et al. 2015 



PT–distribution (PT >> M) – two hard scales 

q  Fragmentation functions of  elementary particles: 

q  Evolution equations: 

q  Evolution kernels: 

If                        , reorganization of  perturbative 

expansion to remove all logarithms of  hard parts 

Q � ⇤QCD



PT–distribution (PT >> M) – two hard scales 

Fragmentation logs are under control! 



q PQCD factorization approach is mature, and has been 
extremely successful in predicting and interpreting high 
energy scattering data with momentum transfer > 2 GeV 

Summary of  lecture two 

q NLO calculations are available for most observables, Many 
new techniques have been developed in recent years for 
NNLO or higher order calculations (not discussed here), 
NNLO are becoming available for the search of  new physics 

q  Leading power/twist pQCD “Factorization + Resummation” 
allow to have precision tests of  QCD theory in the 
asymptotic regime, and to control the background so well 
to discover potential “new physics” beyond SM 

See Yuan’s lectures 

What about the power corrections, richer in dynamics? 



Backup slides 



A complete example – “Drell-Yan” 

²  Cross section with single hard scale: 

q Heavy boson production in hadronic collisions: 

�AB!V (MV ) =
X

ff 0

Z
dxA f(xA, µ

2)

Z
dxB f(xB , µ

2) �̂ff 0!V (xA, xB ,↵s(µ);MV )

²  Cross section with two different hard scales: 

pT ⇠ MV

d�AB!V

dydp2T
(pT ⇠ MV )

d�AB!V

dy
(MV ) �AB!V (MV ), , 

– Fixed order pQCD calculation 

d�AB!V

dydp2T
(pT ⌧ MV ) – Resummation of  double logarithms: 

↵n
s ln2n(M2

V /p
2
T )

d�AB!V

dydp2T
(pT � MV )

– Resummation of  single logarithms: 

↵n
s lnn(p2T /M

2
V )

Same discussions apply to production of  Higgs, and other heavy particles 

A(PA) +B(PB) ! V [�⇤,W/Z,H0, ...](p) +X



Total cross section – single hard scale 

q  Partonic hard parts: 

(Hamberg, van Neerven, Matsuura; Harlander, Kilgore 1991) 

q  NNLO total x-section                             : �(AB ! W,Z)

²  Scale dependence:  

   a few percent 

²  NNLO K-factor is about 

0.98 for LHC data, 1.04 

for Tevatron data 



Rapidity distribution – single hard scale 

 q  NNLO differential cross-section: Anastasiou, Dixon, Melnikov, Petriello, 2003-05 



Rapidity distribution – single hard scale 

q  NNLO differential cross-section: Anastasiou, Dixon, Melnikov, Petriello, 2003-05 



Determination of  mass and width 

q  W mass & width: ,  CTEQ SS2012 



Charge asymmetry – single hard scale 

q  Charged lepton asymmetry: 

Ach(ye) =
d�

W+

/dye � d�

W�
/dye

d�

W+
/dye + d�

W�
/dye

�! d(xB ,MW )/u(xB ,MW )� d(xA,MW )/u(xA,MW )

d(xB ,MW )/u(xB ,MW ) + d(xA,MW )/u(xA,MW )

y ! y
max

The Ach data distinguish between the PDF models,  
reduce the PDF uncertainty 

Tevatron data 

D0 – W charge asymmetry 



Charge asymmetry – single hard scale 

q  Charged lepton asymmetry: 

Ach(ye) =
d�

W+

/dye � d�

W�
/dye

d�

W+
/dye + d�

W�
/dye

�! d(xB ,MW )/u(xB ,MW )� d(xA,MW )/u(xA,MW )

d(xB ,MW )/u(xB ,MW ) + d(xA,MW )/u(xA,MW )

y ! y
max

Sensitive both to d/u at x > 0.1 and u/d at x ~ 0.01  



Flavor asymmetry – single hard scale 

q  Flavor asymmetry of  the sea: 

Could QCD allow ubar(x) > dbar(x)?  




